No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author.

GATE SOLVED PAPER

Computer Science \& IT
2015-2

Copyright © By NODIA \& COMPANY

Information contained in this book has been obtained by authors, from sources believes to be reliable. However, neither Nodia nor its authors guarantee the accuracy or completeness of any information herein, and Nodia nor its authors shall be responsible for any error, omissions, or damages arising out of use of this information. This book is published with the understanding that Nodia and its authors are supplying information but are not attempting to render engineering or other professional services.

NODIA AND COMPANY

B-8, Dhanshree Tower Ist, Central Spine, Vidyadhar Nagar, Jaipur 302039
Ph: +91-141-2101150
www.nodia.co.in
email : enquiry@nodia.co.in

GATE SOLVED PAPER - CS

2015-2

General Aptitude

Q. 1-Q. 5 Carry one mark each.

Q. 3 A generic term that include various items of clothing such as a skirt, a pair of trousers and a shirt is
(A) fabric
(B) textile
(C) fibre
(D) apparel
Q. 4 Choose the statement where underlined word is used correctly.
(A) The industrialist load a personnel jet.
(B) I write my experience in my personnel diary.
(C) All personnel are being given the day off.
(D) Being religious is a personnel aspect

Based on the given statements, select the most appropriate option to solve the given question
What will be the total weight of 10 poles each of same weight?
Statements
(I) One fourth of the weight of a pole is 15 kg .
(II) The total weight of these poles is 160 kg more than the total weight of two poles
(A) Statement I alone is not sufficient
(B) Statement II alone is not sufficient
(C) Either I or II alone is sufficient
(D) Both statements I and II together are not sufficient
Q. 2 Consider a function $f(x)=1-|x|$ on $-1 \leq x \leq 1$. The value of x at which the function attains a maximum, and the maximum value of the function are.
(A) $0,-1$
(B) $-1,0$
(C) 0,1
(D) $-1,2$

We \qquad our friend's birthday and we \qquad how to make it up to him.
(A) Completely forgot \qquad don't just know
(B) Forgot completely \qquad don't just know
(C) Completely forgot \qquad just don't know
(D) Forgot completely \qquad just don't know

Q. 6 - Q. 10 Carry two marks each.

Q. $6 \quad$ In a triangle $P Q R, P S$ is the angle bisector of $\angle Q P R$ and $\angle Q P S=60^{\circ}$ what is the length of $P S$?

(A) $\frac{(q+r)}{q r}$
(B) $\frac{q r}{(q+r)}$
(C) $\sqrt{\left(q^{2}+r^{2}\right)}$
(D) $\frac{(q+r)^{2}}{q r}$
Q. 7 Out of the following four sentences, select the most suitable sentence with respect to grammar and usage.
(A) Since the report lacked needed information, it was of no use to them.
(B) The report was useless to them because there were no needed information in it.
(C) Since the report did not contain the needed information, it was not real useful to them
(D) Since the report lacked needed information, it would not had been useful to them.
Q. 8 If the list of letters, P, R, S, T, U is an arithmetic sequence, which of the following are also in arithmetic sequence?
I. $2 P, 2 R, 2 S, 2 T, 2 U$
II. $P-3, R-3, S-3, T-3, U-3$
III. $P^{2}, R^{2}, S^{2}, T^{2}, U^{2}$
(A) I only
(B) I and II
(C) II and III
(D) I and III
Q. 9 If p, q, r, s are distinct integers such that:
$f(p, q, r, s)=\max (p, q, r, s)$
$g(p, q, r, s)=\min (p, q, r, s)$
$h(p, q, r, s)=$ remainder of $\frac{(p \times q)}{(r \times s)}$ if $(p \times q)>(r \times s)$ or remainder of $\frac{(r \times s)}{(p \times q)}$
if $(r \times s)>(p \times q)$
Also a function $f g h(p, q, r, s)=f(p, q, r, s) \times g(p, q, r, s) \times h(p, q, r, s)$
Also the same operations are valid with two variable functions of the form (p, q) What is the value of $f g(h(2,5,7,3), 4,6,8)$?
Q. 10

Four branches of a company are located at $\mathrm{M}, \mathrm{N}, \mathrm{O}$ and P, M is north of N at a distance of 4 km : P is south of O at a distance of $2 \mathrm{~km}: \mathrm{N}$ is southeast of O by 1 km . What is the distance between M and P in km ?
(A) 5.34
(B) 6.74
(C) 28.5
(D) 45.49

Computer Science and IT

Q. 1-Q. 25 Carry one mark each.

Q. 1 An unordered list contain n distinct elements. The number of comparisons to find an element in this list that is neither maximum nor minimum is
(A) $\Theta(n \log n)$
(B) $\Theta(n)$
(C) $\Theta(\log n)$
(D) $\Theta(1)$
Q. 5 Consider the basic $C O C O M O$ model where E is the effort applied in personmonths, D is the development time in chronological months, $K L O C$ is the estimated of delivered lines of code (in thousands) and $a_{b}, b_{b}, c_{b}, d_{b}$ have their usual meanings. The basic COCOMOequations are of the form
(A) $E=a_{b}(K L O C) \exp \left(b_{b}\right), D=c_{b}(E) \exp \left(d_{b}\right)$
(B) $D=a_{b}(K L O C) \exp \left(b_{b}\right), E=c_{b}(D) \exp \left(d_{b}\right)$
(C) $E=a_{b} \exp \left(b_{b}\right), D=c_{b}(K L O C) \exp \left(d_{b}\right)$
(D) $E=a_{b} \exp \left(D_{b}\right), D=c_{b}(K L O C) \exp \left(b_{b}\right)$
Q. 6 Consider the following two statements.

S1: if a candidate is known to be corrupt, then he will not be elected
S2: if a candidate is kind, he will be elected
Which one of the following statements follows from S_{1} and S_{2} per sound interference rules of logic?
(A) If a person is known to corrupt, he is kind
(B) If a person is not known to be corrupt, he is not kind
(C) If a person is kind, he is not known to be corrupt
(D) If a person is not kind, he is not known to be corrupt
Q. 7 Assume that for a certain processor, a read request takes 50 nanoseconds on a cache miss and 5 nanoseconds on a cache hit. Suppose while running a program, it was observed that 80% of the processors read requests result in a cache hit. The average and access time in nanoseconds is \qquad -.
Q. 8 A system has 6 identical resources and N processes competing for them. each process can request atmost 2 resources. Which one of the following values of N could lead to a deadlock?
(A) 1
(B) 2
(C) 3
(D) 4
Q. 9 Consider a complete binary tree where the left and the right subtrees of the root are max-heaps. The lower bound for the number of operations to convert the tree to a heap is
(A) $\Omega(\log n)$
(B) $\Omega(n)$
(C) $\Omega(n \log n)$
(D) $\Omega\left(n^{2}\right)$
Q. 10 In the context of abstract-syntax-tree (AST) and control-flow-graph (CFG), which one of the following is TRUE?
(A) In both AST and CFG, let node, N_{2} be the successor of node N_{1}. In the input program, the code corresponding to N_{2} is present after the code corresponding in N_{1}.
(B) For any input program, neither AST nor CFG will contain a cycle
(C) The maximum number of successors of a node in an AST and a CFG depends on the input program
(D) Each node is AST and CFG corresponds to at most one statement in the input program
a. 11 With reference to the B+ tree index of order 1 shown below, the minimum number of nodes (including the Root node) that must be fetched in order to satisfy the following query: "Get all records with a search key greater than or equal to 7 and less than 15 " is \qquad

Q. 12 A software requirements specification (SRS) document should avoid discussing which one of the following?
(A) User interface issues
(B) Non-functional requirements
(C) Design specification
(D) Interfaces with third party software
Q. 13 Identify the correct order in which a server process must invoke the function calls accept, bind, listen, and recv according to UNIX socket APL
(A) listen, accept, bind recv
(B) bind, listen, accept, recv
(C) bind, accept, listen, recv
(D) accept, listen, bind recv
Q. 21 Consider two decision problems Q_{1}, Q_{2} such that Q_{1} reduces in polynomial time to 3 -SAT and 3 -SAT reduces in polynomial time to Q_{2}. Then which one of following is consistent with the above statement?
(A) Q_{1} is in NP, Q_{2} in NP hard
(B) Q_{2} is in NP, Q_{1} is NP hard
(C) Both Q_{1} and Q_{2} are in NP
(D) Both Q_{1} and Q_{2} are NP hard
Q. 22 A computer system implements a 40-bit virtual address, page size of 8 kilobytes, and a 128 -entry translation look-aside buffer (TLB) organized into 32 sets each having four ways. Assume that the TLB tag does not store any process id. The minimum length of the TLB tag in bits is \qquad -.
Q. 23 Consider the following C function.

```
int fun(int n){
    int x=1, k;
    if (n==1) return x;
    for (k=1; k<n; ++k)
        x=x+fun(k)*fun(n-k);
    return x;
}
The return value of fun (5) is
```

Q. 24 Consider the following statements
I. The complement of every Turing decidable language in Turing decidable
II. There exists some language which is in NP but is not turing decidable
III. If L is a language in NP, L is turing decidable

Which of the above statements is/are true?
(A) Only II
(B) Only III
(C) Only I and II
(D) Only I and III
Q. 25 The number of divisors of 2100 is \qquad .

Q. 26 - Q. 55 Carry two marks each.

Q. 26 In a connected graph, a bridge is an edge whose removal disconnects a graph. Which one of the following statements is true?
(A) A tree has no bridges
(B) A bridge cannot be part of a simple cycle
(C) Every edge of a clique with size ≥ 3 is a bridge (A clique is any compete sub graph of a graph)
(D) A graph with bridges cannot have a cycle
Q. 27 Consider six memory partitions of sizes $200 \mathrm{~KB}, 400 \mathrm{~KB}, 600 \mathrm{~KB}, 500 \mathrm{~KB}<300$ KB and 250 KB , where KB refers to kilobyte. These partitions need to be allotted to four processes of sizes $357 \mathrm{~KB}, 210 \mathrm{~KB}, 468 \mathrm{~KB}$ and 491 KB in that order. If the best fit algorithm is used, which partitions are NOT allotted to any process?
(A) 200 KB and 300 KB
(B) 200 KB and 250 KB
(C) 250 KB and 300 KB
(D) 300 KB and 400 KB
Q. 28 Which one of the following assertions concerning code inspection and code walkthrough is true?
(A) Code inspection is carried out once the code has been unit tested
(B) Code inspection and code walkthrough are synonyms
(C) Adherence to coding standards is checked during code inspection
(D) Code walkthrough is usually carried out by an independent test team
Q. 29 Given below are some algorithms, and some algorithm design paradigms.

(1)	Dijkstra's Shortest Path	(i)	Divide and Conquer
(2)	Floyd-Warshall algorithm to compute all pair shortest path	(ii)	Dynamic Programming
(3)	Binary search on a sorted array	(iii)	Greedy design
(4)	Backtracking search on a graph	(iv)	Depth-first search
		(v)	Breadth-first search

Match the above algorithms on the left to the corresponding design paradigm they follow.
(A) $1-\mathrm{i}, 2-\mathrm{iii}, 3-\mathrm{i}, 4-\mathrm{v}$
(B) 1-iii, 2-iii, 3 -i, 4 -v
(C) 1-iii, 2-ii, 3-i, 4-iv
(D) 1-iii, 2-ii, $3-\mathrm{i}, 4-\mathrm{v}$
Q. 30 Suppose you are provided with the following function declaration in the C programming language
int partition (int a[], int n);
The function treats the first element of a [] as a pivot, and rearranges the array so that all elements less than or equal to the pivot is in the left part of the array, and all elements greater than the pivot is in the right part. In addition, it moves the pivot so that the pivot is the last elements of the left part. The return value is the number of elements in the left part.
The following partially given function in the C programming language is used to find the $\mathrm{K}^{\text {th }}$ smallest element in an array a [] of size n using the partition function We assume $\mathrm{k} \leq \mathrm{n}$.

```
int kth_smallest (int a[], int n, int k)
{
    int left_end = partition (a, n);
    if(left_end+1==k){
    return a[left_end];
}
    if(left_end+l>k){
    return kth_smallest(_____)
}else{
return kth_smallest(____)
```


The missing argument lists are respectively
(A) (a, left_end, k) and ($\mathrm{a}+\mathrm{left}$ _end $+1, \mathrm{n}$ - left_end $-1, \mathrm{k}$ - left_end -1)
(B) (a, left_end, k) and (a, n - left_end $-1, \mathrm{k}$ - left_end -1)
(C) ($\mathrm{a}+$ left_end $+1, \mathrm{n}-$ left end $-1, \mathrm{k}-$ left_end -1) and (a , left_end, k)
(D) (a, n - left_end $-1, \mathrm{k}$ - left_end -1) and (a , left_end, k)
Q. 31 Consider a typical disk that rotates at 15000 rotations per minute (RPM) and has a transfer rate of 50×10^{6} bytes $/ \mathrm{sec}$. If the average seek time of the disk is twice the average rotational delay and the controller's transfer time is 10 times the disk transfer time, the average time (in milliseconds) to read or write a 512 -byte sector of the disk is \qquad -
Q. 32 Let $f(x)=x^{-\left(\frac{1}{3}\right)}$ and A denote the area of the region bounded by $f(x)$ and the X-axis, when x varies from -1 to 1 . Which of the following statements is/are TRUE?
(I) f is continuous in $[-1,1]$
(II) f is not bounded in $[-1,1]$
(III) A is nonzero and finite
(A) II only
(B) III only
(C) II and III only
(D) I, II and III
Q. 34 The number of min-terms after minimizing the following Boolean expression is

$$
\left[\overline{D^{\prime}}+\overline{A B^{\prime}}+-A^{\prime} C+A C^{\prime} D+A^{\prime} C^{\prime} D\right]^{\prime}
$$

Q. 35 The number of onto function (surjective function) from set $X=\{1,2,3,4\}$ to set $Y=\{a, b, c\}$ is \qquad -.
Q. 36 Consider the alphabet $\Sigma=\{0.1\}$, the null/empty string λ and the sets of strings X_{0}, X_{1} and X_{2} generated by the corresponding non-terminals of regular grammar. X_{0}, X_{1} and X_{2} are related as follows:

$$
\begin{aligned}
& X_{0}=1 X_{1} \\
& X_{1}=0 X_{1}+1 X_{2} \\
& X_{2}=0 X_{1}+\{\lambda\}
\end{aligned}
$$

Which one of the following choices precisely represents the strings in X_{0} ?
(A) $10(0 *+(10) *) 1$
(B) $10\left(0 *+(10)^{*}\right) * 1$
(C) $1(0+10) * 1$
(D) $10(0+10 *) * 1+110(0+10) * 1$
Q. 37 Which of the following languages is/are regular?
$L_{1}:\left\{w x w^{R} \mid w, x \varepsilon\{a, b\}^{*}\right.$ and $\left.|w|,|x|>0\right\}, w^{R}$ is the reverse of string w
$L_{2}:\left\{a^{n} b^{m} \mid m \neq n\right.$ and $\left.m, n \geq 0\right\}$
$L_{3}:\left\{a^{p} b^{q} c^{r} \mid p, q, r \geq 0\right\}$
(A) L_{1} and L_{3} only
(B) L_{1} only
(C) L_{2} and L_{3} only
(D) L_{3} only
Q. 38 Consider a processor with byte-addressable memory. Assume taht all registers, including Program Counter (PC) and Program Status Word (PSW), are of size 2 bytes. A stack in the main memory is implemented from memory location $(0100)_{16}$ and it grows upward. The stack pointer (SP) points to the top element of the stack. The current value of SP is $(016 E)_{16}$. The CALL instruction is of two words, the first word is the op-code and the second word is the starting address of the subroutine. (one word $=2$ bytes). The CALL instruction implemented as follows:
$\square \square$ Store the current Vale of PC in the StackStore the value of PSW register in the stack
\square Load the starting address of the subroutine in PC
The content of PC just before the fetch of a CALL instruction is $(5 F A 0)_{16}$. After execution of the CALL instruction, the value of the stack pointer is
(A) $(016 A)_{16}$
(B) $(016 C)_{16}$
(C) $(0170)_{16}$
(D) $(0172)_{16}$

The number of states in the minimal deterministic finite automaton corresponding to the regular expression $(0+1) *(10)$ is \qquad
Host A sends a UDP datagram containing 8880 bytes of user data to host B over an Ethernet LAN. Ethernet frames may carry data up to 1500 bytes (i.e. MTU $=1500$ bytes). Size of UDP header is 8 bytes and size of IP heard is 20 bytes. There is no option field in IP header How many total number of IP fragments will be transmitted and what will be the contents of offset field in the last fragment?
(A) 6 and 95
(B) 6 and 7400
(C) 7 and 1110
(D) 7 and 8880

Consider the following routing table at an IP router:

Network No.	Net Mask	Next Hop
18.96 .170 .0	255.255 .254 .0	Interface 0
128.96 .168 .0	255.255 .254 .0	Interface 1
128.96 .166 .0	255.255 .254 .0	R2
128.96 .164 .0	255.255 .252 .0	R3
0.0 .0 .0	Default	R4

For each IP address in Group I identify the correct choice of the next hop from Group II using the entries from the routing table above.

Group I		Group II	
(i)	128.96 .171 .92	(a)	Interface 0
(ii)	128.96 .167 .151	(b)	Interface 1
(iii)	$128.96 .163 . .151$	(c)	R2
(iv)	128.96 .165 .121	(d)	R3
		(e)	R4

(A) $\mathrm{i}-\mathrm{a}$, ii -c , iii - e, iv - d
(B) i - a, ii - d, iii - b, iv - e
(C) i - b, ii - c, iii - d, iv - e
(D) i - b, ii - c, iii - e, iv - d
Q. 42 Consider two relations $R_{1}(A, B)$ with the tuples (1.5), $(3,7)$ and $R_{2}(A, C)=$ (1.7), (4, 9). Assume that $R(A, B, C)$ is the full natural outer join of R_{1} and R_{2} . Consider the following tuples of the form $(A, B, C): a=(1.5$, null),$b=(1$, null, $7), c=(3$, null, 9$), d=(4,7$, null $), e=(1,5,7), f=(3,7$, null $), g=(4$, null, 9$)$. Which one of the following statements is correct?
(A) R contains a, b, e, f, g but not c, d
(B) R contains all of a, b, c, d, e, f, g
(C) R contains e, f, g but not a, b
(D) R contains e but not f, g
Q. 43 Consider a simple checkpointing protocol and the following set of operations in the log.
(Start, T4); (write, T4, y, 2,3); (Start, R1); (commit, T4); (write, T1, z,5,7) (checkpoint);
(Start, T_{2}); (write, T2, x, 1,9); (commit, T2); (start, T3), (write, T3, z, 7,2);
If a crash happens now and the system tries to recover using both undo and redo operations, what are the contents of the undo lists and the redo list?
(A) Undo T3, T1; Redo T2
(B) Undo T3, T1; Redo T2, T4
(C) Undo: none; redo: T2, T4, T3, T1
(D) Undo T3, T1; T4; Redo: T2
Q. 44
Q. 45

A computer system implements 8 kilobyte pages and a +32 -bit physical address space. Each page table entry contains a valid bit, a dirty bit, three permission bits, and the translation. If the maximum size of the page table of a process is 24 megabytes, the length of the virtual address supported by the system is
\qquad bits.
Which one of the following hash functions on integers will distribute keys most uniformly over 10 buckets numbered 0 to 9 for i ranging from 0 to 2020?
(A) $h(i)=i^{2} \bmod 10$
(B) $h(i)=i^{3} \bmod 10$
(C) $h(i)=\left(11 * i^{2}\right) \bmod 10$
(D) $h(i)=(12 * i) \bmod 10$
Q. 46 Assume that the bandwidth for a TCP connection is $1048560 \mathrm{bits} / \mathrm{sec}$. Let α be the value of RTT in milliseconds. (rounded off to the nearest integer) after which the TCP window scale option is needed. Let β be the maximum possible window size the window scale option. Then the values of α and β are
(A) 63 milliseconds, 65535×2^{14}
(B) 63 milliseconds, 65535×2^{16}
(C) 500 milliseconds, 65535×2^{14}
(D) 500 milliseconds, 65535×2^{16}

A young tableau is a 2D array of integers increasing from left to right and from top to bottom. Any unfilled entries are marked with ∞, and hence there cannot be any entry to the right of, or below a ∞. The following Young tableau consists of unique entries.

1	2	5	14
3	4	6	23
10	12	18	25
31	∞	∞	∞

When an element is removed from a Young tableau, other elements should be moved into its place so that the resulting table is still a Young tableau (unfilled entries may be filled in with a ∞). The minimum number of entries (other than 1) to be shifted, to remove 1 from the given Young tableau is \qquad
A half adder is implemented with XOR and AND gates. A full adder is implemented with two half adders and one OR gate. The propagation delay of an XOR gate is twice that of an AND/OR gate. The propagation delay of an AND/OR gate is 1.2 microseconds. A 4-bit ripple-carry binary adder is implemented by using four full adders. The total propagation time of this 4 -bit binary adder in microseconds is \qquad .
Consider the sequence of machine instruction give below:
MUL R5, R0, R1
DIV R6, R2, R3
ADD R7, R5, R6
SUB R8, R7, R4
In the above sequence, R0 to R8 are general purpose registers. In the instructions shown, the first register stores the result of the operation performed on the second and the third registers. This sequence of instructions is to be executed in a pipelined instruction processor with the following 4 stages (1) Instruction Fetch and Decode (IF), (2) Operand Fetch (OF), (3) Perform Operation (PO) and (4) Write back the result (WB). The IF, OF and WB stages take 1 clock cycle each for any instruction The PO stage takes 1 clock cycle for ADD or SUB instruction, 3 clock cycles for MUL instruction and 5 clock cycles for DIV instruction. The pipelined processor uses operand forwarding from the PO stage to the OF stage. The number of clock cycles taken for the execution of the above sequence of instructions is \qquad _.
Perform the following operations on the matrix $\left[\begin{array}{ccc}3 & 4 & 45 \\ 7 & 9 & 105 \\ 13 & 2 & 195\end{array}\right]$.
(i) Add the third row to the second row
(ii) Subtract the third column from the first column

The determinant of the resultant matrix is \qquad .
Q. 51 Which one of the following well formed formulae is tautology?
(A) $\forall \times \exists y R(x, y) \leftrightarrow \exists y \forall \times R(x, y)$
(B) $(\forall \times[\exists y R(x, y) \rightarrow S(x, y)]) \rightarrow \forall \times \exists y S(x, y)$
(C) $[(\forall \times \exists y(p(x, y) \rightarrow R(x, y))] \rightarrow[\forall \times \exists y(x, y) V R(x, y)]$
(D) $\forall \times \forall y p(x, y) \rightarrow \forall y \forall y p(y, x)$
Q. 52
Q. 53
Q. 54

A graph is self-complementary if it is isomorphic to its complement For all selfcomplementary graphs on n vertices, n is
(A) A multiple of 40
(B) Even
(C) Odd
(D) Congruent to $0 \bmod 4$, or, $1 \bmod 4$

The secant method is used to find the root of an equation $f(x)=0$. It is started from two distinct estimates, x_{a} and x_{b} for the root. It is an iterative procedure involving linear interpolation to a root. The iteration stops if $f\left(x_{b}\right)$ is very small and then x_{b} is the solution. The procedure is given below. Observe that there is an expression which is missing and is marked by? Which is the suitable expression that is to be put in place of? so that it follows all steps of the secant method?
secant
Initialize: $x_{a}, x_{b}, \varepsilon, N \quad / / \varepsilon=$ convergence indicator // $N=$ maximum no. of iterations
$f_{b}=-f\left(x_{b}\right)$
$i=0$
While $\left(i<N\right.$ and $\left|f_{b}\right|>(\varepsilon)$ do
$i=i+1 \quad / /$ update counter
$x_{1}=$? $/ /$ missing expression for
$x_{a}=x_{b} \quad$ b/intermediate value
$1 /$ reset x_{a}
$f_{b}=f\left(x_{b}\right) \quad / /$ function value at new x_{b}
end while
if $\left|f_{b}\right|>\varepsilon$ then //loop is terminated with $i=N$
write "Non-convergence"
else
Write "Non-Convergence"
Else
Write "return x_{b} "
End
(A) $x_{b-}\left(f_{b}-f\left(x_{a}\right)\right) f_{b} /\left(x_{b}-x_{a}\right)$
(B) $x_{a}-\left(f_{b}-f\left(x_{a}\right)\right) f_{a} /\left(x_{b}-x_{a}\right)$
(C) $x_{b}-\left(x_{b}-x_{a}\right) f_{b} /\left(f_{b}-f\left(x_{a}\right)\right)$
(D) $x_{a}-\left(x_{b}-x_{a}\right) f_{a} /\left(f_{b}-f\left(x_{a}\right)\right)$

Let X and Y denote the sets containing 2 and 20 distinct objects respectively and F denote the set of all possible functions defined from X to Y. Let f be randomly chosen from F. The probability of f being one-to-one is \qquad .

```
Q. }55\mathrm{ Consider the C program below.
#include<stdio.h>
Int*A, stkTop;
Int stkFunc (int opcode, int val)
{
    Static int size=0, stkTop=0;
Switch (opcode){
    Case-1: Size = val; break;
        Case-0: if(stk Top<size)A(stktop++]= val; break;
        Default: if(stktop)return A[--stkTop];
}
return-1;
}
int main()
{
int B[20]; A=B; stkTop=-1;
stkFunc(-1, 10);
stkFunc(0, 5);
stkFunc(0, 10);
print f("%d\n", stkFunc(1, 0)+stkfunc(1, 0);
```

The value printed by the above program is \qquad .

END OF THE QUESTION PAPER

ANSWER KEY

General Aptitude									
1	2	3	4	5	6	7	8	9	10
(C)	(C)	(D)	(C)	(C)	(B)	(A)	(B)	(8)	(A)

Computer Science and IT

1	2	3	4	5	6	7	8	9	10
(D)	(D)	(B)	(14)	(A)	(C)	(14)	(D)	(A)	(C)
11	12	13	14	15	16	17	18	19	20
(5)	(C)	(B)	(6)	(2048)	(A)	(D)	(12)	(3)	(C)
21	22	23	24	25	26	27	28	29	30
$(\mathrm{~A})$	(22)	(51)	(D)	(36)	(B)	(A)	(C)	(C)	(A)
31	32	33	34	35	36	37	38	39	40
(6.1)	(C)	(B)	(1)	(36)	(C)	(A)	(D)	(3)	(C)
41	42	43	44	45	46	47	48	49	50
$(\mathrm{~A})$	(C)	(A)	(36)	(B)	(C)	(5)	(19.2)	(13)	(0)
51	52	53	54	55					
(C)	(D)	(C)	(0.95)	(15)					

